Biomechanics of articular cartilage and determination of material properties.

نویسندگان

  • Xin L Lu
  • Van C Mow
چکیده

Descriptions of the mechanical behaviors of articular cartilage and their correlations with collagen, proteoglycan, water, and ions are summarized, with particular emphasis on understanding the osmotic effect inside the tissue. First, a descriptive explanation is presented of the biphasic theory required to understand how interstitial water contributes toward the viscoelastic behavior of any hydrated soft tissue. Then, the famous osmotic effect in charged, hydrated soft tissue is interpreted in light of the triphasic mixture theory framework. In the introduction of mechanical testing methods, our emphasis is on the popular indentation technique, which can determine the material properties of cartilage in situ or in vivo. The widely accepted indentation analysis solutions in cartilage biomechanics history are summarized and evaluated. At the end of this paper, a new generalized correspondence principle between charged, hydrated soft tissue and linear, isotropic, elastic material (i.e., elasticity theory) is introduced. This principle makes the employment of triphasic theory as straightforward as using an elasticity theory to solve any equilibrium problem where the elasticity theory can be used to model the material. By using this generalized correspondence principle, the fixed charge density of bovine cartilage has been simply and conveniently calculated from the indentation testing data. The results of proteoglycan content from this mechanical test are remarkably consistent with those from standard biochemical assay. This new correspondence principle significantly improves the power of indentation tests in the determination of mechanoelectrochemical properties of articular cartilage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an experimental set-up for material characterization of articular cartilage

Articular cartilage is a very complex composite material, overlaying diarthrodial joints surfaces (e.g. knee, shoulder, temporomandibular, etc.), holding load bearing, lubrication and shock absorbing capabilities [1]. Characterization of articular cartilage material properties is necessary to study its mechanical response and consequently its impact on joints biomechanics [2]. Furthermore, the ...

متن کامل

Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition.

For this study, we hypothesized that the depth-dependent compressive equilibrium properties of articular cartilage are the inherent consequence of its depth-dependent composition, and not the result of depth-dependent material properties. To test this hypothesis, our recently developed fibril-reinforced poroviscoelastic swelling model was expanded to include the influence of intra- and extra-fi...

متن کامل

Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model.

A time- and depth-dependent Poisson's ratio has been observed during unconfined compression experiments on articular cartilage, but existing cartilage models have not fully addressed these phenomena. The goal of this study was to develop a model which is able to predict and explain these phenomena, while also being able to fit other experimental scenarios on full depth cartilage specimens such ...

متن کامل

Dehydration rates of meniscus and articular cartilage in vitro using a fast and accurate laser-based coordinate digitizing system.

When used in in vitro studies, soft tissues such as the meniscus and articular cartilage are susceptible to dehydration and its effects, such as changes in size and shape as well as changes in structural and material properties. To quantify the effect of dehydration on the meniscus and articular cartilage, the first two objectives of this study were to (1) determine the percent change in menisc...

متن کامل

The Effect of Mesenchymal Stem Cells and Aqueous Extract of Elaeagnus Angustifolia on the Mechanical Properties of Articular Cartilage in an Experimental Model of Rat Osteoarthritis

Introduction: Although, the effect of direct intra-articular injection of bone marrow stem cells (BMSCs) on the repair of articular cartilage and the effect of Elaeagnus angustifolia extract on pain relief in patients with osteoarthritis have been investigated, no studies has been conducted to compare the effects of these two therapeutic methods on the mechanical properties of articular cartila...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medicine and science in sports and exercise

دوره 40 2  شماره 

صفحات  -

تاریخ انتشار 2008